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Abstract—Today’s smart-phone cameras enable touch-less bio-
metric fingerprint capture for practical use. This is inexpensive,
comfortable and now fast enough for practical use. This paper
deals with the question of how reliably two fingerprints can be
compared, when one of them is captured by a smart-phone
and the other by a dedicated fingerprint scanner. A multi-
sensor database with 4310 fingerprint images from 108 users
was collected. Three touch-based sensors and two touch-less
finger photo sensors were used. Latest quality estimations using
NFIQ 2.0 and vendor-specific quality metrics complete the study
on professional capabilities of finger photo recognition. As side-
result of the study, a new touch-less fingerprint processing chain
is presented, which reduces the error rates to 1% EER for touch-
less-to-touch comparison. This value is comparable to that for
touch-to-touch applications.

Index Terms—fingerprint recognition, inter-operability test,
touch-less vs. touch-based.

I. INTRODUCTION

According to a user acceptance study by Labati et
al. [10] 96.7% of users prefer touch-less sensing of fingerprints
over touch sensors for biometric recognition. Advantages
compared to classical touch-based acquisition are manifold:
no skin distortions in free acquisition (projection); almost
no skin condition impact because frustrated total internal
reflection (FTIR) setup is avoided; better hygienic conditions
as no surface is touched; and safer application without latent
fingerprints left on the sensor. Consequently, the last decade
has seen a series of developments towards new acquisition
methods at-a-distance [9].

An example of a new touch-less sensing device is Mor-
pho’s 2014 ‘Finger On the Fly’ fingerprint sensor, but also
webcams and smart-phones are already in use. Under lab
conditions EERs as low as 0.22% were achieved with pre-
processing of the photos captured [10]. Under less restrictive
conditions, however, the error rates for finger photos can easily
be over 20% and even higher [22]. The lack of resolution
information, the different depth of field and quality assurance
are challenges that the research groups address, especially in
manual smart-phone acquisition. Figure 1 shows a typical set-
up where a database fingerprint from a touch-based sensor is
compared to a fingerprint from a touch-less sensor.

A prominent representative of Automated Fingerprint Iden-
tification Systems (AFIS) benefiting from the new non-contact
technology is access control. The cooperation of contact-less
and touch-based systems seems to become necessary soon.
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Fig. 1: Touch-based to touch-less fingerprint comparison setup.

Up to now, studies on touch-less fingerprint scanning have
dealt little with the interaction with touch-based scanners. The
topic was addressed by e. g. [10], [20], but deserves further
attention to identify limitations and propose new solutions.
The detection of counterfeits has also attracted a great deal of
attention. Stein et al. [21] developed anti-spoofing algorithms
to detect spoof attempts with fingerprint patterns recorded with
an integrated smart-phone camera. The Fingerprint Liveness
Detection Competition (LivDet) compares various fingerprint
recognition methods [13]. This paper investigates cross-sensor
inter-operability issues in touch-less (finger photo) vs. touch-
based fingerprint recognition. It comes with contributions in
inter-operability and novel finger segmentation and image
enhancement methods. First, regarding inter-operability the
paper adds compared to previous work [10], [20], [12]: (a) the
first cross-sensor inter-operability test involving multiple ref-
erence touch sensors (4-finger optical, 2-finger optical and 1-
finger capacitive) and smart-phones (LG Flex 2 with standard
illumination and fixed focus, Samsung Note 4 with autofocus
and dedicated ring light) on a database of 4310 samples
coming from 108 users; and (b) a quality evaluation based on
latest quality measurement tools (NFIQ 2.0) highlighting the
usability of quality metrics on touch-less, enhanced fingerprint
images. Second, with regards to new touch-less fingerprint
processing methods, the paper adds a new segmentation tech-
nique designed for simultaneous 4-finger-capture, in contrast
to previous techniques focusing on single-finger acquisition.
It is shown that touch-less fingerprint capture with modern
smart-phones can achieve a recognition rate similar to that of
traditional touch-based scanners. This paper is structured as
follows: An introduction to related work is given in Section II.



The novel 4-finger preprocessing method is presented in
Section III. The collected database and exhaustive experiments
on multiple sensors are presented in Section IV. Section V
summarises the results of the study and concludes with an
outlook on future work.

II. RELATED WORK

Recent studies have shown that fingerprint recognition from
smart-phones is possible [11], however accuracy largely de-
pends on the image enhancement and quality restrictions of the
underlying acquisition process. Under laboratory conditions
and with fixed finger distance to the smart-phone, less than
5% EER were achieved [1], [5]. But with varying finger
distances and less restrictive image quality, considerable degra-
dations (more than 20% EER) were observed [22]. Besides
smart-phones as finger photo sensors, also webcams [19],
digital cameras [3], or dedicated sensing devices [5] have been
employed. Sensing may be based on single images or video,
use specific illumination to improve ridge contrast, and may
or may not use placement guides to overcome the problem
of segmentation and/or estimating the correct resolution [10].
Images traditionally need enhancement, such as contrast im-
provement [3], noise reduction, and unrolling [25] in order
to provide reasonable accuracy. Besides 2D also 3D sensing
technology has been investigated for finger photo recognition:
structured light [24] and photometric stereo [8] have been
successfully used for it. These two methods directly estimate
ridge shape from the sensed data. Kumar and Kwong [8]
reported 1.17% EER for combining 2D and 3D and Labati
et al. [10] recently presented a depth from stereo approach
with EERs as low as 0.22% outperforming previous solutions.
3D information can also be used to improve distortion cor-
rection. Here, finger shape instead of surface details are taken
into account to unroll the 3D fingerprint surface details into
2D [25]. This leads to better minutiae pairing at the com-
parison stage. In addition to classical high-resolution features,
inferior (50 dpi) fingerprint solutions [7] that concentrate on
textural properties or Level 1 features were also investigated.
In the last decade finger photo recognition research has largely
introduced specific systems focusing on advancements in the
processing chain: new preprocessing methods, features and
comparators supporting the larger variability in scale (Ta-
ble I). New processing chains for smart-phones (especially
segmentation and preprocessing techniques) have been sug-
gested [11], [1], [22], [23], [20]. Khalil and Wan [6] review
image quality assessment, alignment and segmentation for
finger photo recognition for mobile phones, but without a
quantitative assessment of methods. While smart-phones come
with a series of advantages in biometric sensing, especially
availability and market penetration, there are only very few
studies including questions on inter-operability between touch-
less and touch-based systems. Recently, this topic receives
further attention: Labati et al. [10] investigate inter-operability
comparing their high-end dedicated machine vision touch-
less 3D finger acquisition system with touch-based technol-
ogy (Crossmatch Verifier 300) revealing 4.62% EER in inter-

device mode compared to 0.17% on the same database (single-
image enrolment) as a side aspect of their proposed system.
Sankaran et al. [20] evaluate finger-photo-to-fingerprint in
their work, but just a single touch-sensor (Lumidigm Venus
IP65) is used and EERs are rather high and scattered (5.53-
49.51% EER for inter-sensor vs. 3.65-37.25% EER for finger
photo only) due to non-optimised algorithms. A good overview
on finger photo recognition methods can be found in the
recent work of Labati et al. [9]. Current paper suggests a new
segmentation procedure, investigates quality filtering impacts
on recognition accuracy, and highlights state-of-the-art recog-
nition performance in true inter-sensor-type configurations.

III. SEGMENTATION & IMAGE ENHANCEMENT

Current smart-phones are normally equipped with
12 (or higher) megapixel (MP) cameras, such as the LG
Flex 2 (4160×3120 pixels, hereafter Flex 2) or the Samsung
Note 4 (5312×2988 pixels, hereafter Note 4). Table II shows
the resulting resolution in dpi for the Note 4 for different image
formats and distances. The image resolution at a distance of
8±2 cm is more than sufficient for Level-2 fingerprint details.
A key feature is the fast image segmentation that extracts up
to n = 4 upright oriented finger areas F1, . . . , Fn from an
input image I . Since the high resolution does not contribute
much for this purpose, the images are reduced in size. This
speeds up the segmentation procedure which is an intensive
computing process. The segmentation is based on combined
skin colour masks in the HLS and RGB colour spaces.
Individual fingers (often touching fingers) are separated by
using the dark finger borders that are obscured by shadows
and the local contrast which is higher there. Generally,
this does not work to separate fingers from the possible
visible palm of the hand. For this reason, an outline tracing
separates significant peaks (fingers) from the torso (palm of
the hand). The segmentation results are then used to cut out
the fingerprints individually. Monochrome images using full
resolution are obtained. The image enhancement processes are
essentially noise reduction and contrast enhancement. Since
the exact distance between fingers and camera is not known,
the image resolution is estimated based on the average ridge
distance. This reduces variability and allows a reasonable
scaling for the comparison algorithm.

A. Skin-Mask Finger Segmentation

For the segmentation, the image resolution is reduced to
400 pixels in width while maintaining the aspect ratio. This
reduced RGB image is then smoothed with a Gaussian fil-
ter (σ = 1.5) and converted to HLS. Separate masks for H, L
and S of the HLS colour space are created. For each mask, a
valid range of values (minimum and maximum) for skin colour
is defined separately, relative to the corresponding values of a
reference HLS triplet. The reference HLS triplet is calculated
from the reference RGB triplet. The default reference RGB
triplet is (rR, rG, rB) = (200, 140, 120). Alternatively, manu-
ally selected finger pixels from the RGB image can be used.
This approach is recommended as it supports different skin



NCC◦2 =
(wR ∗ rR ∗ IR + wG ∗ rG ∗ IG + wB ∗ rB ∗ IB)◦2

(wR ∗ r2R + wG ∗ r2G + wB ∗ r2B) ∗ (wR ∗ IR◦2 + wG ∗ IG◦2 + wB ∗ IB◦2)
(1)

TABLE I: Some finger photo recognition systems in the literature. FAR = False Acceptance Rate, FRR = False Rejection Rate,
EER = Equal Error Rate, GAR = Genuine Acceptance Rate. sa = samples, us. = users, cl = classes, n.s. = not specified.

Reference Sensing Contribution Test Database Reported
(sa., us., cl.) Accuracy (best)

Labati et al. [10] 3D touch-less new setup (depth from stereo) & (multi-template) matching (2368, n.s., n.s.) 0.22% EER
Jonietz et al. [5] 2D touch-less novel portable device & segmentation comparison (96, n.s., n.s.) 2% FRR at 0.1% FAR
Sankaran et al. [20] smart-phone open database (iPhone 5), segmentation & feature (ScatNet) (5100, 64, n.s.) 3.65% EER
Tiwari and Gupta [23] smart-phone new (scale-invariant) features & segmentation (n.a., 50, n.s.) 3.33% EER
Kumar and Kwong [8] 3D touch-less 3D sensing (shape from shading) & finger surface code (1440, 240, n.s.) 1.17% EER (3D+2D)
Ravi and Sivanath [19] webcam new 1-finger processing chain (segment, extract, compare) (120, 20, n.s.) 93.6% acc.
Stein et al. [22] smart-phone processing chain (quality, segmentation) for freeform 1-finger (n.a., 41, n.s.) < 20% EER
Derawi et al. [1] smart-phone comparison of fingerphoto capability (Nokia N95, HTC de-

sire) with standard software
(1320, 22, n.s.) 4.5% EER

Kumar and Zhou [7] 2D touch-less novel low-resolution (50 dpi) feature; new 2-session database (1566, 156, n.s.) 3.95% EER
Zhao et al. [25] 3D touch-less comparison of 3D-2D unrolling methods & new approach (n.s., n.s., 24) 17 avg. mated minutiae
Hiew et al. [4] 2D touch-less new preprocessing & Multiple Random Projections-Support

Vector Machine method
(1938, n.s., 103) 1.23% EER

Hiew et al. [3] 2D touch-less novel normalisation, segmentation, enhancement (STFT) (1938, n.s., 103) 95.44% acc. core points
Lee et al. [11] smart-phone new acquisition method & processing chain (840, n.s., 168) 85% GAR at 0.1% FAR

TABLE II: Image resolution in dpi when capturing fingerprints
with a Note 4 at 5K, 4K (UHD) and 1080p (HD) sensor
resolution, for different shooting distances.

6 cm 7 cm 8 cm 9 cm 10 cm

5K 1955 1687 1467 1297 1163
UHD 1414 1219 1060 938 841
HD 707 610 530 469 420

colours and other influencing parameters, like white-balance.
By applying the value ranges, the three binary masks H, L and
S are created which are linked with a logical ‘and’. In addition,
the left and right edge areas are blanked out in this combined
HLS mask to avoid background pixels with skin-like tones.
A practical example of this is a red brick wall that appeared
in one of our outdoor test shots. A weighted normalised cross
correlation (NCC) with the reference RGB triplet is performed
for each RGB pixel (equation 1). The weights for red, green
and blue are wR = 1.0, wG = 0.7 and wB = 0.3 and
the operator ◦2 denotes element-wise power. The combined
HLS mask is applied to the image NCC◦2 with the squared
correlation values (the correlation values themselves are not
computed for calculation speed reasons). Then an RGB mask
is created to select the pixels with the highest correlation
values, but not more than 10% of all pixels. Morphological
operations are used to fill small holes and remove small pixel
groups in this mask. This limited pixel selection is assumed
to belong to the fingers, but do not necessarily include all
finger pixels. From this pixel selection a new reference RGB
triplet is generated by averaging the selected pixels and the
whole process is repeated, although the size restrictions (left
and right margin blanked out, not more than 10% of the
pixels) are now omitted. In addition, the RGB image is
vertically smoothed, converted to grey values and the local

Fig. 2: Segmentation examples for 4 touching fingers. Top
row: input images, bottom row: segmentation results. The
yellow rings mark the centres of the rectangles that will be
cut-out. The red rings mark the mid of the upper rectangle
edge (indicates that the found fingers are pointing upwards).

variance is calculated for each pixel. Dark pixels with high
local variance are considered as potential boundaries between
touching fingers and masked out with a threshold applied to
the ratio between the local variance and the brightness of the
pixels. The contour silhouettes of the fingers are retrieved by
following the boundaries of segmented objects. For the case
that fingers are connected via the potentially visible ball of
the thumb, fingers are separated by evaluating significant local
minima and maxima in the contours. Individual finger contour
point sets are then enclosed with minimum rotated rectangles.
Based on these oriented rectangles, which are scaled back onto
original size, the individual finger images are extracted.

B. Finger Image Enhancement

While colour is very useful for segmentation, it has little
impact on the quality of the fingerprint. Therefore, the image
enhancement works monochrome (Image Im). We invert our
fingerprint images in brightness and mirror them so that they
can be compared with classical fingerprint images, in which
the fingerprint is recorded and not the finger itself. To enhance
the fingerprint images, following operations are applied:



N = g(boxblur(Im, s)− Im, σ) (2)
E = dilate(erode(dilate(N))) (3)

C =
√

boxblur(N◦2, s) (4)
Cn = E/C (5)

where boxblur(., s) is a box blur filter with size s, g(., σ)
refers to Gaussian blurring with sigma σ and image N is
locally brightness normalised (i.e. local brightness is zero),
brightness inverted and smoothed. Note that these calculations
work with floating point and that N and E also have negative
pixels. The morphological operations dilate and erode for
image E are not binary. They work with local minima and
maxima functions and help to reduce noise. Image C contains
local standard deviations (as a measure of contrast). Image Cn

has normalised local standard deviations (i.e. local standard
deviation is 1.0). The image Cn is then mirrored and converted
to a non-negative value range (e.g. 0 to 255). This is done
by multiplying the image values with a gain factor, adding
an offset and truncating the obtained values. Background
pixels (determined by the finger segmentation) and pixels with
very low contrast values (in C) are masked out (i.e. set to
white) in Cn. Finger borders are blurred to avoid that sharp
edges interfere with fingerprint comparison.

C. Resolution Estimation

Within the final processing stage, the fingerprint region
of interest is re-scaled based on an estimation of the ridge
frequency. According to [18] the mean distance between
fingerprint ridges in 500 dpi impressions is 7.71 pixels, while
standard deviation is as low as 1.01 pixels. This is quite
promising to serve as an initial estimate for fingerprint scale
estimation. To estimate ridge frequency, for each finger region
F1, . . . , Fn the image is transformed into Fourier domain
using the maximum inscribed square with optimal size for fast
DFT. The mean values of the most pronounced frequencies
are averaged over all visible finger regions. This serves as
a basis for scaling the fingerprints to approximately 500 dpi.
Although this measurement is not accurate, it does offer a
useful approach for consider the limited scale invariance of
current fingerprint comparison algorithms.

IV. EXPERIMENTAL STUDY

Experiments were conducted to: (a) investigate touch-less
smart-phone fingerprint recognition performance when com-
pared against touch-based systems, (b) validate the useful-
ness of the presented fast multi-finger segmentation chain,
and (c) verify the compatibility of different fingerprint qual-
ity estimation algorithms (including the recently released
NFIQ 2.0 [16]) for fingerprints of touch-less systems.

A. Fingerprint Quality Estimation

The image quality of fingerprints is influenced by a number
of different variables. Dry skin causes eroded ridges and wet
skin leads to dilated ridges. Besides, variable contact pressure,

high displacement, rotation, and non-linear distortions between
3D surface and 2D touch-based sensing make fingerprint
acquisition and comparison a non-trivial task. Algorithms for
evaluating fingerprint quality, such as NFIQ 1.0 or NFIQ 2.0,
map each fingerprint image to a discrete quality value. This
value estimates the likelihood that an image will lead to a
successful inter-personnel comparison. Although none of the
algorithms have been designed for application to finger-photo
data, NFIQ 2.0 delivered good results in our experiments. High
quality is desirable to keep system error rates low, but in the
past it was shown that some algorithms for quality assessment,
such as the neural network based NFIQ 1.0, have certain
weaknesses [17]. When comparing touch-based with touch-
less fingerprint images, the resulting images may suffer from
different influences (e.g. blurred images are a common source
of error in touch-less systems, while touch-based systems can
easily control focus).

B. Database

For the current study we have collected a database with
4310 fingerprints of 108 users. For each user 8 fingerprints
were taken with 5 different sensors, although it was not
always possible to capture all fingers (e.g. presence of adhesive
bandages or cut fingers). The following three touch-based (TB)
systems and two touch-less (TL) smart-phones were used:

• TB Opt4: Optical 4-finger sensor ARH AFS510. This
is an FBI IAFIS Appendix F-certified device (500 ppi
capture device, 3.58×3.07 inch sensor plate).

• TB Opt2: Optical 2-finger sensor Crossmatch EF200.
This is an FBI IAFIS Appendix F-certified de-
vice (500 ppi capture device, 1.60×1.50 inch sensor
plate).

• TB Cap1: Capacitative 1-finger sensor SMUFS Blue-
tooth. This system offers wireless mobile 508 ppi finger-
print scanning, but is not certified according to FBI IAFIS
Appendix F [2].

• TL PhoneA: Smart-phone Samsung Note 4 with
autofocus. Fingerprint capture with additional ring-light
support (9 white LEDs attached to the phone’s case,
surrounding the 16 MP rear camera).

• TL PhoneF: Smart-phone LG Flex 2 with fixed focus.
With this innovative fingerprint capture, multiple shots
are taken at different distances with fixed focus and the
best (sharpest) is selected.

C. Algorithms

For each touch-based device, the manufacturer-specific APIs
were used to perform fingerprint capture (Opt4 and Opt2
with internal quality controls, a series of attempts before
a result is delivered). In case of touch-less devices, while
PhoneA works with autofocus, PhoneF acquires images with
fixed focus. To do this, a number of shots are taken in
continuous shooting mode, varying the distance between the
PhoneF and the fingers. The best-shot selection was then made
by estimating the sharpness of the images using a square
gradient approach. After applying the finger segmentation and



enhancement of Section III-A the NIST’s most recent release
of Biometric Image Software [15] (open source reference sys-
tem), and the Verifinger SDK Neurotechnology’s fingerprint
matcher [14] (state-of-the-art commercial reference system)
were employed for assessment.

In case of touch-based systems, the image resolution is
known which is why the two aforementioned methods are not
robust against scaling errors. Since the resolution (in dpi) of
the smart-phone images can only be estimated, we improve
the recognition accuracy by up-scaling and down-scaling the
fingerprint images based on the resolution estimation in the
range of −25% to +25% in 5% steps. The highest resulting
score for the fingerprint recognition is then regarded as the
correct one. This method is a bit time-consuming, yet simple.
In the future, there may be fingerprint comparison methods
that are insensitive to fluctuations in scaling.

D. Evaluation Procedure

To assess fingerprint recognition performance in inter-
sensor-type versus cross-sensor-type configurations we employ
latest ISO/IEC 19795-6 metrics (FAR, FRR, FTA and GAR)
and quality measures (NFIQ-1, NFIQ-2 and VF) for opera-
tional testing of biometric systems:

• FAR: False Accept Rate - proportion of incorrectly
authenticated impostors.

• FRR: False Reject Rate - proportion of falsely denied
authentic users.

• FTA: Failure To Acquire - proportion of attempts for
which the system fails to capture a sample.

• GAR: Genuine Acceptance Rate - proportion of correctly
accepted authentic (genuine) users. GAR = 100%−FRR.

• NFIQ-1: Quality metric from NFIQ release 1.0. Quality
levels 1 to 5, 1 is best.

• NFIQ-2: Quality metric from NFIQ release 2.0. Quality
levels 0 to 100, 100 is best.

• VF: Quality metric from the commercial Verifinger SDK.
Quality levels 0 to 100, 100 is best.

E. Distribution of Quality Values

In a first experiment, the collected database was used to
investigate the distribution of the quality values depending on
the quality metrics and sensors. The graphs on the left column
of Fig. 4 show that in general the quality metrics ‘NFIQ-1’ and
‘VF’ assign significantly lower quality values to the images of
the touch-less sensors (‘PhoneA’ and ‘PhoneF’) than those of
the touch-based sensors. This can be seen in the higher curves.
This is because even at low thresholds many samples are
already covered, so there are fewer samples with a better level
and the curve is higher. But the curves for the quality metrics
NFIQ-2 (Fig. 4c) suggest that the sensors have a similar
quality and only the images from the touch-based sensor
‘Cap1’ are evaluated worse. These different classifications of
the quality metrics show their limited usability. It should still
be noted that all 3 metrics show a slightly better quality
for ‘PhoneF’ images (fixed focus) compared to ‘PhoneA’
images (autofocus).
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Fig. 3: ROCs comparing sensor performance at NFIQ-2 quality
threshold level 30. Inter-sensor-type ROC compares TL with
TL and TB; cross-sensor-type ROC compares TL with TB.
TL=touch-less, TB=touch-based.

F. Inter- vs. Cross-sensor-type Performance

Our investigations focus on the cross-sensor-type perfor-
mance of fingerprint acquisition sensors. Since the images
of all touch-based systems undergo a vendor-specific quality
check, we have adopted this behaviour for smart-phones and
defined a common minimum quality threshold. We use NFIQ-
2, which seems to have the best quality assessment and we use
level 30 as quality threshold which even in the worst case (see
‘Cap1’ in Fig. 4c) excludes not more than 20% of the images.
Figure 3 shows the Receiver Operating Characteristics (ROCs)
for the inter-sensor-type (a) and cross-sensor type (b) com-
parisons. Touch-based inter-sensor-type systems (optical and
capacitive) come to 99.5% GAR at only 0.1% FAR. The touch-
less inter-sensor-type system (PhoneA and PhoneF image
matches) still comes close to 99% GAR at 0.1% FAR. In
the cross sensor type configurations (Fig. 3b), the fixed focus
smart-phone (‘PhoneF’) achieves better values, with GARs
from 97.5% to 98.6% at 0.1% FAR. ‘PhoneA’ scores only
95.5% to 97% GAR at 0.1% FAR. For both smart-phones, the
fingerprint comparisons with the capacitive sensor (‘Cap1’)
show the weakest detection accuracy. By restricting com-
parisons to Appendix F-certified touch sensors (‘Opt4’ and
‘Opt2’) and ‘PhoneF’, the recognition accuracy is only slightly
worse than that of the inter-phone configurations.

G. Threshold for Fingerprint Quality Estimation

The right column of Fig. 4 shows for each quality measure
how EER depends on the choice of the quality threshold.
Filtering based on ‘NFIQ-2’ tends to decrease EER at sig-
nificantly lower quality values than ‘VF’. Therefore, even at
comparatively low thresholds, small EER values are achieved.
The spikes at the end of the curves (Fig. 4d and 4f) come
about because the sample quantities become too small with
high thresholds and the statistical power is lost. We also ex-
amined the dependence of EER (as a measure for classification
accuracy) on FTE (images that are not approved for fingerprint
comparison due to poor quality) and we observed that the
quality assessment by ‘NFIQ-2’ criterion seems to be most
suitable for smart-phones.

V. CONCLUSION AND FUTURE WORK

In this paper we examined the performance of touch-less
fingerprint capture with smart-phones. Designated fingerprint
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Fig. 4: Left column: Cumulative Distribution
Functions (CDFs) of the quality estimation (QE) techniques.
The curves show for each score the relative frequency of
the samples in our database, whose score is no better. Right
column: Equal Error Rate (EER) performance obtained by
filtering according to quality threshold (rejecting all images
with lower quality). QF means Quality Filtering.

scanners have qualitative advantages because of their con-
trolled recording conditions (e.g. constant scanning distance),
but smart-phones are nowadays widely used devices and
therefore in application scenarios where mobility is important
a highly attractive alternative. We have presented a new
approach to segmenting the fingers in the images, which also
works well when the fingers touch each other and therefore do
not need to be clearly spread. The algorithm is based, among
other features, on the correlation of the pixel RGB triplets
with a skin-coloured reference RGB triple and the evaluation
of local brightness and contrast (for finger segmentation). With
a fixed focus and a threshold of level 30 (<20% FTE) of the
recently released NFIQ 2.0 quality metrics, a smart-phone in
combination with FBI IAFIS Appendix F certified fingerprint
scanners achieved 98.5% GAR at 0.1% FAR. Alternatively,
an EER of 1% can be achieved (99% GAR at 1% FAR). In
the future we will try to improve the algorithms. Instead of
selecting only the best (sharpest) from a stack of images, we
want to try to use the information from the other stack images
as well. Future smart-phones will probably have even better
sensors and capabilities offering new possibilities such as
better estimation of the distance and resolution, which would
help both processes segmentation and fingerprint comparison.

ACKNOWLEDGEMENT

This work has received funding from the Austrian Security
Research Programme KIRAS (grant agreement no 845495).

REFERENCES

[1] M. Derawi, B. Yang, and C. Busch. Fingerprint Recognition with
Embedded Cameras on Mobile Phones, pages 136–147. Springer Berlin
Heidelberg, Aalborg, Denmark, 2012.

[2] FBI. Privacy impact assessment integrated automated fingerprint identi-
fication system national security enhancements, 2018. [Online; accessed
2018/10/18].

[3] B. Hiew, A. B. Teoh, and D. C. Ngo. Preprocessing of fingerprint
images captured with a digital camera. In Proc. Int’l Conf. on Control,
Automation, Robotics and Vision, pages 1–6, Dec 2006.

[4] B. Y. Hiew, A. B. J. Teoh, and O. S. Yin. A secure digital camera based
fingerprint verification system. Journal of Visual Communication and
Image Representation, 21(3):219 – 231, 2010.

[5] C. Jonietz, E. Monari, H. Widak, and C. Qu. Towards mobile and
touchless fingerprint verification. In Proc. Int’l Conf. on Advanced Video
and Signal Based Surveillance (AVSS), pages 1–6, Aug 2015.

[6] M. S. Khalil and F. K. Wan. A review of fingerprint pre-processing
using a mobile phone. In Proc. Int’l Conf. on Wavelet Analysis and
Pattern Recognition, pages 152–157, July 2012.

[7] A. Kumar and Y. Zhou. Contactless fingerprint identification using level
zero features. In Proc. Comp. Vis Pattern Rec. Workshops (CVPRW),
pages 114–119, June 2011.

[8] C. Kwong and A. Kumar. Towards contactless, low-cost and accurate
3d fingerprint identification. 2013 IEEE Conference on Computer Vision
and Pattern Recognition, pages 3438–3443, 2013.

[9] R. Labati, V. Piuri, and F. Scotti. Touchless Fingerprint Biometrics.
Taylor and Francis, London, U.K., 2016.

[10] R. D. Labati, A. Genovese, V. Piuri, and F. Scotti. Toward unconstrained
fingerprint recognition: A fully touchless 3-d system based on two views
on the move. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 46(2):202–219, Feb 2016.

[11] C. Lee, S. Lee, J. Kim, and S.-J. Kim. Preprocessing of a Fingerprint
Image Captured with a Mobile Camera, pages 348–355. Springer Berlin
Heidelberg, 2005.

[12] C. Lin and A. Kumar. A cnn-based framework for comparison of
contactless to contact-based fingerprints. IEEE TRANSACTIONS ON
INFORMATION FORENSICS AND SECURITY, 14(3):662–676, 2019.

[13] V. Mura, L. Ghiani, G. L. Marcialis, F. Roli, D. A. Yambay, and
S. A. Schuckers. LivDet 2015 fingerprint liveness detection competition
2015. In 2015 IEEE 7th International Conference on Biometrics Theory,
Applications and Systems (BTAS), 2015.

[14] NEUROTechnology. VERIFINGER SDK, 2018. [Online; accessed
2018/10/18].

[15] NIST. Biometric Image Software V4.2. 2013.
[16] NIST. Development of NFIQ 2.0, 2018. [Online; accessed 2018/10/18].
[17] M. Olsen and C. Busch. Deficiencies in NIST fingerprint image quality

algorithm. In 12. Deutscher ITSicherheitskongress, BSI, 2011.
[18] T. Orczyk and L. Wieclaw. Fingerprint ridges frequency. In 2011 Third

World Congress on Nature and Biologically Inspired Computing, pages
558–561, Oct 2011.

[19] H. Ravi and S. K. Sivanath. A novel method for touch-less finger
print authentication. In Proc. Int’l Conf. on Technologies for Homeland
Security (HST), pages 147–153, Nov 2013.

[20] A. Sankaran, A. Malhotra, A. Mittal, M. Vatsa, and R. Singh. On
smartphone camera based fingerphoto authentication. In Proc. Int’l.
Conf. Biometrics Theory, Appl. and Systems (BTAS), pages 1–7, 2015.

[21] C. Stein, V. Bouatou, and C. Busch. Video-based fingerphoto recognition
with anti-spoofing techniques with smartphone cameras. In International
Conference of the BIOSIG Special Interest Group (BIOSIG), 2013.

[22] C. Stein, C. Nickel, and C. Busch. Fingerphoto recognition with
smartphone cameras. In Proc. Conf. Biometrics Special Interest Group
(BIOSIG), pages 1–12, Darmstadt, Germany, Sept 2012.

[23] K. Tiwari and P. Gupta. A touch-less fingerphoto recognition system
for mobile hand-held devices. In Proc. Int’l Conf. on Biometrics (ICB),
pages 151–156, May 2015.

[24] Y. Wang, L. G. Hassebrook, and D. L. Lau. Data acquisition and
processing of 3-d fingerprints. IEEE Transactions on Information
Forensics and Security, 5(4):750–760, Dec 2010.

[25] Q. Zhao, A. Jain, and G. Abramovich. 3d to 2d fingerprints: Unrolling
and distortion correction. In Proc. Int’l Joint Conf. onBiometrics (IJCB),
pages 1–8, Oct 2011.


